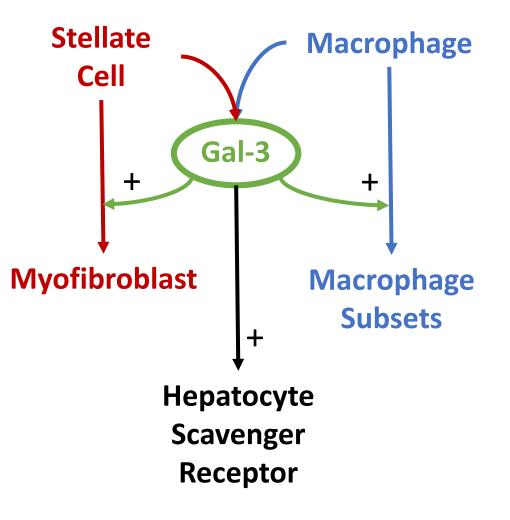
A multicenter, randomized, double-blind, placebo-controlled trial of Galectin-3 inhibitor (GR-MD-02) for one year in patients with NASH cirrhosis and portal hypertension

The NASH-CX Trial

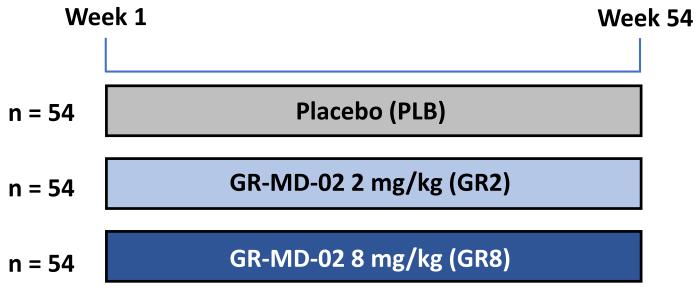
 ¹Naga Chalasani, ²Guadalupe Garcia-Tsao, ³Zachary Goodman, ⁴Eric Lawitz, ⁵Manal Abdelmalek, ⁶Mary Rinella, ⁷Michael Ryan, ⁸Mazen Noureddin, ⁹Christopher Jue, ¹Maxmillan Pyko, ¹⁰Adam Allgood, ¹⁰Harold Shlevin, ¹⁰Rex Horton, ¹⁰Eliezer Zomer, ¹⁰Peter G. Traber, ¹¹Rohit Loomba, ¹²Brent Neuschwander-Tetri, ¹³Arun Sanyal, ¹⁴Stephen A Harrison


¹Indiana University, Indianapolis, IN, ²Yale University, New Haven, CT, ³INOVA Fairfax Hospital, Fairfax, VA, ⁴Texas Liver Institute, San Antonio, TX, ⁵Duke University, Durham, NC, ⁶Northwestern University, Chicago, IL, ⁷Digestive and Liver Disease Specialists, Norfolk, VA, ⁸Cedars Sinai Medical Center, Los Angeles, CA, ⁹Digestive Health Specialists, Winston-Salem, NC, ¹⁰Galectin Therapeutics, Norcross, GA, ¹¹UCSD, San Diego, CA, ¹²St. Louis University, St. Louis, MO, ¹³VCU, Richmond, VA, ¹⁴Pinnacle Clinical Research, San Antonio, TX

Rationale for Galectin-3 Inhibition in NASH

- Gal-3 is a lectin protein that binds to galactose residues on glycoproteins and is increased in NASH and liver fibrosis/cirrhosis
- Gal-3 null mice are resistant to NASH and fibrosis
- Gal-3 involved in multiple pathophysiologic processes in NASH and liver fibrosis
- GR-MD-02 is a complex carbohydrate drug that inhibits gal-3 and improves pathology of NASH and reverses fibrosis/cirrhosis in animal models ^{1,2}
- Safe and well tolerated in normal and NASH patients with advanced fibrosis in Phase 1 studies

¹ Traber PG and Zomer E.PLOS ONE 2013;8:e83481


² Traber PG, Chou H, Zomer E, Hong F, Klyosov A Fiel M-I, Friedman, SL. PLOS ONE 2013;8:e75361.

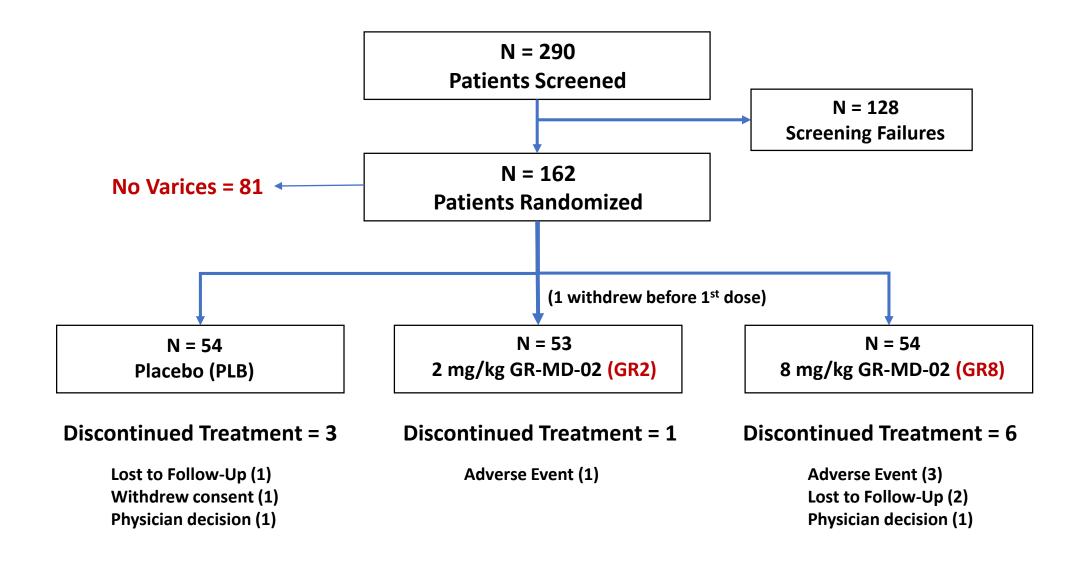
NASH-CX Clinical Trial Design

AIM: Evaluate Safety and Efficacy of GR-MD-02 in Compensated NASH Cirrhosis

Major Inclusion Criteria	NASH cirrhosis (biopsy)	No decompensating event	
	HVPG ≥ 6 mmHg	No or small varices	

Every other week intravenous infusion X 26

Study Endpoints & Assessment Methods


Primary Endpoint

- Change in Hepatic Venous Pressure Gradient (HVPG)
 - Baseline and Week 54
 - Standardized Procedure and Central Blinded Reading

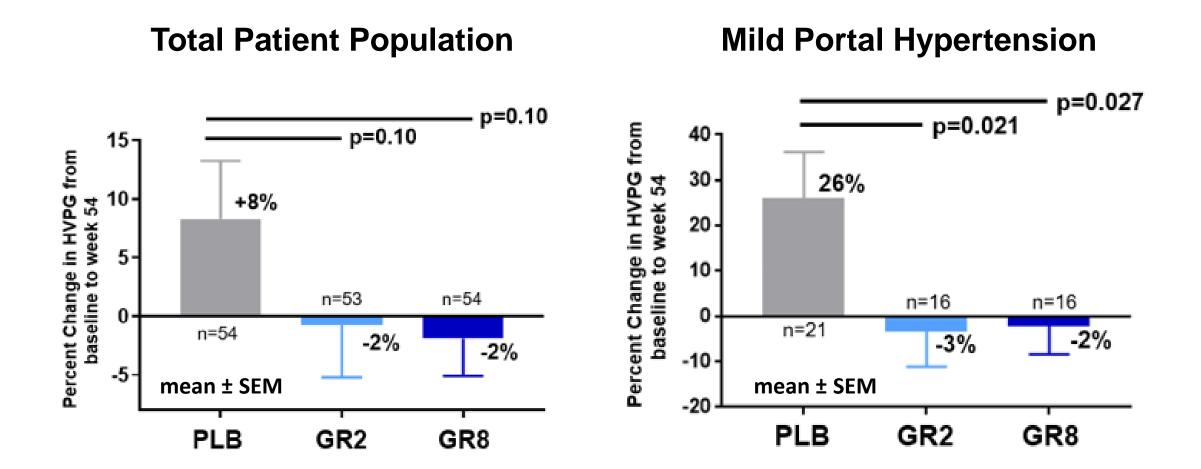
Secondary Endpoints

- Change in Liver Histology
 - NAFLD Activity Score and Fibrosis Staging
 - Quantitative Morphometry for Collagen
 - Baseline and week 54
 - Central Blinded Reading
- Endoscopy to Evaluate for Varices
- Complications of Cirrhosis

Study Disposition (36 US Sites)

Study Demographics & Baseline Assessments

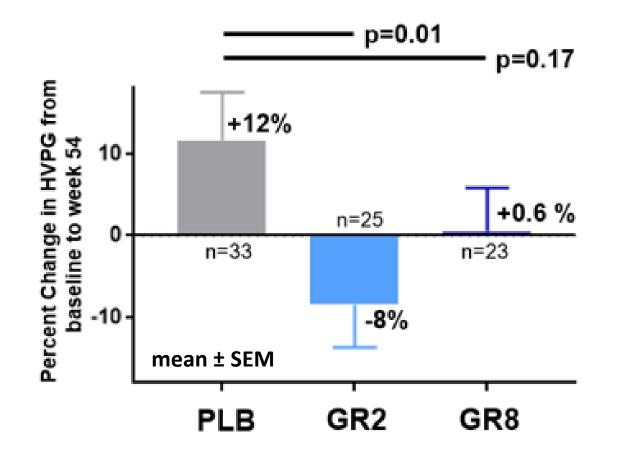
	Total (n=162)	Placebo (n=54)	GR2 (n=54)	GR8 (n=54)
Age, years; median (IQR)	59 (52, 65)	59 (53, 64)	60 (53, 65)	58 (51, 63)
Female, n (%)	113 (70)	36 (67)	34 (63)	43 (79)
Non-Hispanic White, n (%)	132 (81)	46 (85)	46 (85)	40 (74)
BMI, kg/m ² ; median (IQR)	34 (31, 39)	34 (30, 38)	36 (31, 41)	35 (31, 38)
Diabetes, n (%)	100 (62)	32 (59)	32 (59)	36 (67)
AST (U/L) mean ± SD	49.8 ± 33.8	51.9 ± 48.2	48.3 ± 23.0	49.3 ± 24.8
ALT (U/L) mean ± SD	47.1 ± 34.1	48.1 ± 38.1	42.4 ± 21.0	50.9 ± 40.1
ELF Score mean ± SD	10.7 ± 1.2	10.8 ± 1.1	10.7 ± 1.2	10.7 ± 1.2
NAFLD Activity Score	4.2 ± 1.6	4.2 ± 1.5	4.3 ±1.3	4.2 ± 1.6
Ishak Stage (5/6)	48/123	13/41	20/43	15/39
Collagen (%) mean ± SD	10.5 ± 6.1	10.8 ±6.5	9.7 ± 5.9	11.0 ± 6.1


IQR=interquartile range; BMI=body mass index; AST=aspartate transaminase; ALT=alanine transaminase; ELF=enhanced liver fibrosis; NAFLD=non-alcoholic fatty liver disease

Baseline HVPG (mmHg) in Patient Groups

	Total Mean ± SD (n)	Placebo Mean ± SD (n)	GR2 Mean ± SD (n)	GR8 Mean ± SD (n)
Full Analysis Set	12.2 ± 4.2 (162)	11.6 ± 4.0 (54)	12.4 ± 4.3 (54)	12.7 ± 4.2 (54)
CSPH Sub-group	14.3 ± 3.4 (108)	14 ± 3.1 (33)	14.2 ± 3.9 (37)	14.8 ± 3.1 (38)
MPH Sub-Group	7.9 ± 1.2 (53)	7.8 ± 1.3 (21)	8.2 ± 1.0 (16)	7.8 ± 1.3 (16)
No Varices Sub-Group	10.6 ± 3.5 (81)	10.8 ± 3.8 (33)	10.3 ± 2.9 (25)	10.7 ± 3.8 (23)
With Varices Sub-Group	13.9 ± 4.2 (80)	12.9 ± 4.1 (21)	14.2 ± 4.6 (28)	14.2 ± 3.9 (31)

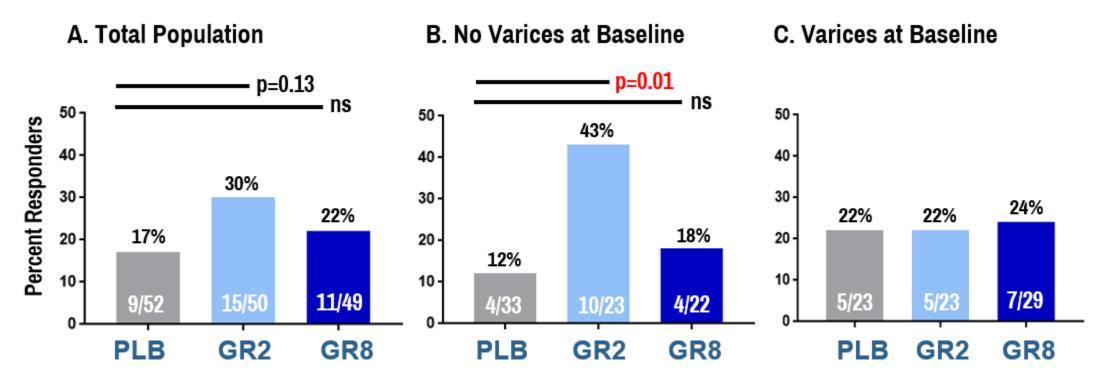
There were no statistical differences between the three treatment groups for any of the measures. CSPH=clinically significant portal hypertension ($\geq 10 \text{ mm Hg}$). MPH=mild portal hypertension ($\geq 6 \text{ and} < 10 \text{ mm Hg}$).


HVPG Primary Endpoint (Pre-Specified Analyses)

ITT with LOCF (last observation carried forward); ANOVA with LSD (least squared difference)

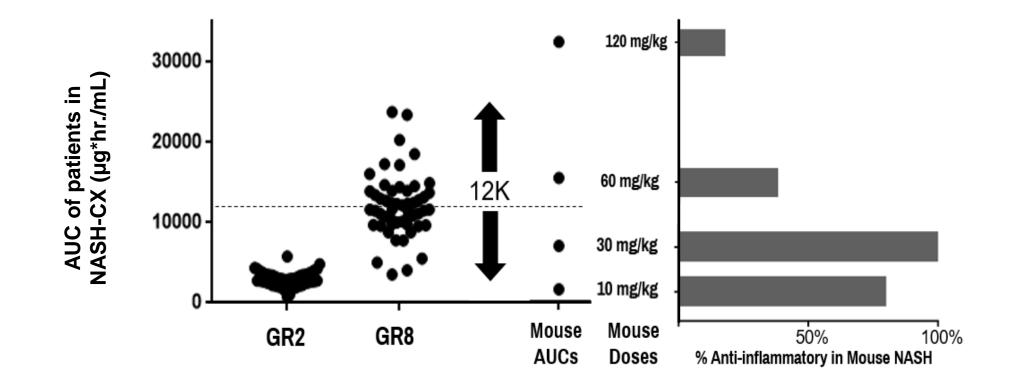
No Esophageal Varices at Baseline (Post Hoc Analysis)

50% of patients (81) did not have varices at baseline

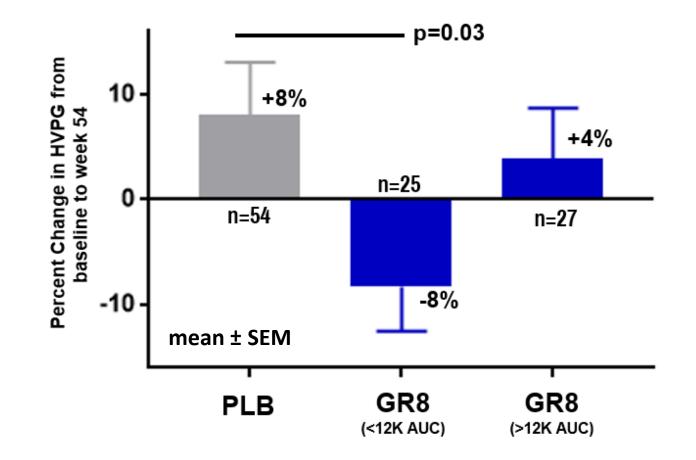


ITT with LOCF; ANOVA with LSD

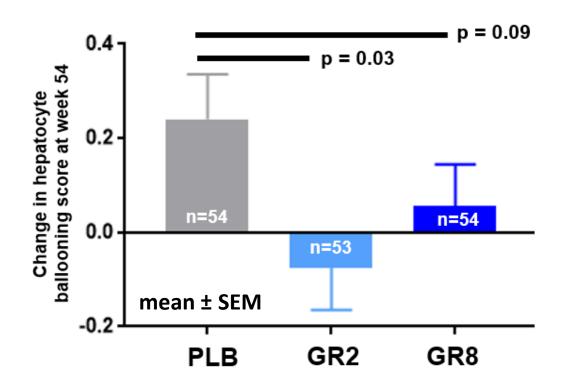
Responder Analysis (Post Hoc Analysis)


Percentage of Patients Who Had a Clinically Relevant Reduction in HVPG With:

- ≥ 2 mmHg Decrease From Baseline <u>AND</u>
- ≥ 20% Decrease From Baseline


Chi Square Analysis

PK-PD Correlation Between Human and Mouse


Change in HVPG Using PK Range Groups for GR8

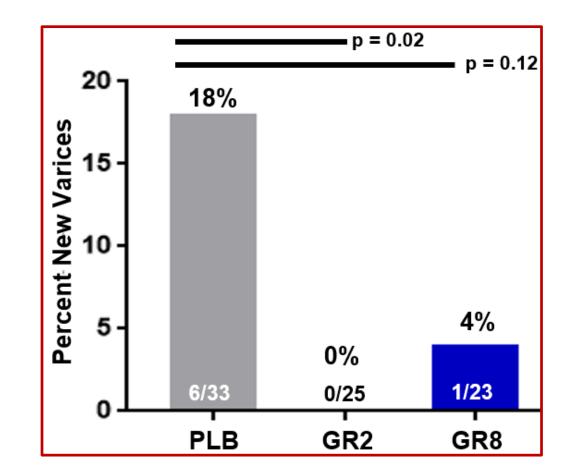
ITT; ANOVA with LSD; AUC=area under concentration curve (µg*hr./mL)

Changes in Liver Histology in Total Patient Population

- Trend towards improvement in NAS that did not reach significance
- No differences in steatosis across the treatment groups
- Statistically significant difference between GR2 and placebo for inflammation scores in the patients without baseline varices
- There was no effect on fibrosis staging or percent collagen on morphometry
- Statistically significant improvement in hepatocyte ballooning in GR2 group and trend in GR8 group

ITT Analysis Set; Ordinal logistic regression analysis

Correlation of Liver Biopsy Findings in HVPG Responders


Total Patient Population

	GR2 ¹	GR8 ¹
Hepatocyte Ballooning	0.04	0.05
NAFLD Activity Score	0.19	0.28
Ishak Stage	0.20	0.59

¹p value compared to placebo

Ordinal logistic regression analysis was used to compare groups. ITT analysis set.

Fewer Patients in GR Groups Developed New Varices

Chi Square Analysis

Development of Cirrhosis Complications¹

	Total	PLB	GR2	GR8
FAS Population	n=161	n=54	n=53	n=54
 Complications – n(%) 	21 (13)	9 (17)	5 (9)	7 (13)
No-Varices Population	n=81	n=33	n=25	n=23
 Complications – n(%) 	12 (15)	7 (21)	3 (12)	2 (9)
MPH Population	n=53	n=21	n=16	n=16
 Complications – n(%) 	4 (8)	3 (14)	1 (6)	0

Development of new varices Variceal hemorrhage Clinically significant ascites Overt hepatic encephalopathy ↑ CTP score ≥ 2
 ↑ MELD to ≥ 15
 Liver transplantation or death

Adverse Events

	Total (n=161)	PLB (n=54)	GR2 (n=53)	GR8 (n=54)
Treatment Emergent (TE) AEs	1323	431	509	383
Patients with at least ≥ grade 3 AE (%)	33 (20.5)	11 (20.4)	11 (20.8)	11 (20.4)
Patients with at least 1 TE SAE ¹ (total)	25 (34)	8 (10)	5 (10)	12 (14)
Study drug discontinued due to AE	3	0	0	3 ²
Death	1	0	1 ³	0

- ¹ Two treatment emergent SAEs were rated by PI as possibly related to study drug (transient ischemic attack and worsening of hyponatremia, both GR8) but were rated by sponsor as unrelated; All other SAEs were unrelated to study drug
- ² Probably related to drug: spasmodic cough (1); Unrelated to study drug: esophageal variceal bleeding (2).
- ³ Pulmonary embolism following hernia repair surgery, judged to be unrelated to study drug

Conclusions

- Change in HVPG associated with GR treatment was not significant in total patient population, but statistically significant in the pre-specified group of mild portal hypertension
- In patients without varices at baseline, there was a statistically significant difference in the GR2 group in the change in HVPG, percentage of responders, and development of new varices
- GR treatment improved hepatocyte ballooning in the total, which correlated with an improvement in HVPG
- > Less pronounced effects of GR8 may be explained by its variable pharmacokinetics
- GR 2 and GR 8 treatment was well-tolerated with no safety signals
- These results warrant further trials with GR-MD-02 in compensated NASH cirrhotic patients without esophageal varices or those with mild portal hypertension

Acknowledgements

We extend our thanks to the patients, their families and all participating investigators

Indiana University School of Medicine-Dr. Chalasani The Texas Liver Institute-Dr. Lawitz Duke University Medical Center-Dr. Abdelmalek Feinberg School of Medicine - Northwestern University-Dr. Rinella Pinnacle Clinical Research, PLLC-Dr. Harrison Digestive and Liver Disease Specialists-Dr. Ryan Cedars Sinai Medical Center-Dr. Noureddin Digestive Health Specialists, PA-Dr. Jue Medical University of South Carolina-Dr. Rockey Thomas Jefferson University-Dr. Halegoua-De Marzio Texas Clinical Research Institute LLC-Dr. Ghalib Virginia Commonwealth University-Dr. Sanyal University of Mississippi Medical Center-Dr. Borg Bon Secours Richmond Health System-Dr. Shiffman University of Colorado Denver-Dr. Wieland Columbia University Medical Center-Dr. Wattacheril University of Michigan-Dr. Conjeevaram Mcguire Veterans Affairs Medical Center-Dr. Fuchs Baylor College of Medicine-Dr. Vierling Piedmont Hospital-Dr. Rubin

Mary Immaculate Hospital-Dr. Shiffman Saint Louis University-Dr. Tetri Mercy Medical Center-Dr. Thuluvath Swedish Medical Center-Dr. Kowdlev UH Cleveland Medical Center-Dr. Gholam International Medical Investigations Center-Dr. Rodriguez Intermountain Medical Center-Dr. Charlton Tulane University Health Sciences Center-Dr. Balart Vanderbilt University Medical Center-Dr. Scanga Walter Reed National Military Medical Center-Dr. Torres Tampa General Medical Group-Dr. Kemmer University of California San Diego Medical Center-Dr. Loomba Beth Israel Deaconess Medical Center-Dr. Lai University Gastroenterology-Dr. Sepe Minnesota Gastroenterology PA-Dr. Zogg Brooke Army Medical Center-Dr. Paredes HVPG Yale University School of Medicine-Dr. Garcia-Tsao Liver Biopsy Inova Fairfax Hospital-Dr. Goodman

This study was funded by Galectin Therapeutics, Inc.